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What are image edges?

Very sharp
discontinuities
In intensity.

grayscale image
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Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?
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v You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?



Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

v You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

v You use finite differences.



Finite differences

High-school reminder: definition of a derivative using forward difference
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Finite differences

High-school reminder: definition of a derivative using forward difference

Fia) - fim L@ = 1@
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Alternative: use central difference

, . f(z+0.5k) — f(z — 0.5h)
fe) = jim h

For discrete signals: Remove limit and set h = 2

f’(:c) - f($ + 1) — f(CL‘ — 1) What convolution kernel
o 9 does this correspond to?




Finite differences

High-school reminder: definition of a derivative using forward difference

Fia) - fim L@ = 1@
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Alternative: use central difference

, . f(z+0.5k) — f(z — 0.5h)
fe) = jim h

For discrete signals: Remove limit and set h = 2

flx+1) — f(x—1) 1D derivative filter
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The Sobel filter

Vertical Sober filter:

110 (-1 1 110 [-1| “Derivative”
210|-2 — 2 *
01]-1
“Blurring”

Horizontal Sobel filter:

112(1 1 11211 “Blurring”
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“Derivative”



Sobel filter example
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Computing image gradients

1. Select your favorite derivative filters.
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Computing image gradients

1. Select your favorite derivative filters.
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0]-1 1(-21-1

2. Convolve with the image to compute derivatives.

of of
P =5, f Ay =8, f



Computing image gradients

. Select your favorite derivative filters.

0]-1 121
S,=12|0][-2 S,=10]|0]0
0]-1 1(-2]-1

. Convolve with the image to compute derivatives.

of of
P =5, f Ay =5,Qf

Form the image gradient, and compute its direction and amplitude.

_|of Of B 4 (Of ,0f 9\ 2 9\
V- [ax,ay] 9 — tan l(ay/aw) ku:\/(a_x) (9

gradient direction amplitude



Image gradient example

original vertical
5 derivative
gradient horizontal
amplitude derivative

g

How does the gradient direction relate to these edges?



How do you find the edge of this sighal?

intensity plot
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How do you find the edge of this sighal?

intensity plot

Using a derivative filter:

What's the

derivative plot problem here?
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Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!
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Derivative of Gaussian (DoG) filter

Derivative theorem of convolution: %(h *x f) = ( 0 h) *x f

Sigma = 50
T

derivative of

Gaussian \/
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Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

« Smoothed derivative removes noise, but blurs edge. Also finds
edges at different “scales”.

Source: D. Forsyth



Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

first-order 5h) — 0. 1D derivative filter
- TSt £(z) = lim flz +05h) — fe —05h)
finite difference h—0 h 110]-1
second-order . o flx+h) —=2f(x)+ flx—h) Laplace filter
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Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

first-order 5h) — 0. 1D derivative filter
- TSt £(z) = lim flz +05h) — fe —05h)
finite difference h—0 h 110]-1
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Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Sigma = 50
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Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering
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Laplace and LoG filtering examples

Laplacian of Gaussian filtering Laplace filtering




Laplacian of Gaussian vs Derivative of Gaussian
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Laplacian of Gaussian filtering Derivative of Gaussian filtering



Laplacian of Gaussian vs Derivative of Gaussian

Zero-crossing

Laplacian of Gaussian filtering Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).



But Wait ... Is Pixel Difference the Final Answer?

image human segmentation gradient magnitude

Where do
humans see
boundaries?

« Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB slides: Hays


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Score = confidence of edge.
For humans, this is averaged across
multiple participants.

Pb (0.88)



Score = confidence of edge.
For humans, this is averaged across
multiple participants.
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Canny Edge Detector

* Arguably the most widely used
edge detectorin computer vision

* Theoretical model: step-edges
corrupted by additive Gaussian noise




Canny edge detector

1. Filter image with X, y derivatives of Gaussian

Source: D. Lowe, L. Fei-Fei



erivative of Gaussianfilter

x-direction y-direction




Compute Gradients

X Derivative of Gaussian Y Derivative of Gaussian

(x2 + 0.5 for visualization)




Canny edge detector

1. Filter image with X, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei



Compute Gradient Magnitude

sqgrt( XDerivOfGaussian .*2 + YDerivOfGaussian .2 ) = gradient magnitude




Compute Gradient Orientation

 Threshold magnitude at minimum level
» (et orientation via theta = atan2(yDeriv, xDeriv)




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei



Non-maximum suppression for each orientation

At pixel q:
We have a maximum if the
value is larger than those at

® ° q ® both p and atr.
Gradient /

Interpolate along gradient
o e * direction to get these values.

Source: D. Forsyth



Before Non-max Suppression

Gradient magnitude (x4 for visualization)



After non-max suppression

Gradient magnitude (x4 for visualization)



Canny edge detector

1. Filter image with X, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

— Thin multi-pixel wide “ridges” to single pixel width

4. "Hysteresis’ Thresholding

Source: D. Lowe, L. Fei-Fei



‘Hysteresis’ Thresholding

* Two thresholds — high and low

« (Grad. mag. > high threshold? = strong edge
« (Grad. mag. <low threshold? noise

* In between =weak edge

» Edge linking: ‘Follow’ edges starting from strong edge pixels
* Continue them into weak edges
* Connected components

Source: S. Seitz



Final Canny Edges
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Effect of o (Gaussian kernel spread/size)

Original

The choice of o depends on desired behavior

» large odetects large scale edges

small o detects fine features

Source: S. Seitz



Canny edge detector

1. Filter image with X, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

— Thin multi-pixel wide “ridges” to single pixel width
4. "Hysteresis' Thresholding:

— Define two thresholds: low and high

— Use the high threshold to start edge curves and the
low threshold to continue them

— ‘Follow’ edges starting from strong edge pixels
Connected cOMponents (Szliski 3.3.4)

Python: e.g., skimage.feature.canny()

Source: D. Lowe, L. Fei-Fei
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